Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861403

RESUMO

Chromatin remodeling enzymes form large multiprotein complexes that play central roles in regulating access to the genome. Here, we characterize the nuclear import of the human CHD4 protein. We show that CHD4 enters the nucleus by means of several importin-α proteins (1, 5, 6 and 7), but independently of importin ß1. Importin α1 directly interacts with a monopartite 'KRKR'-motif in the N-terminus of CHD4 (amino acids 304-307). However, alanine mutagenesis of this motif only leads to an ∼50% reduction in nuclear localization of CHD4, implying that there are additional import mechanisms. Interestingly, we could show that CHD4 was already associated with the nucleosome remodeling deacetylase (NuRD) core subunits, such as MTA2, HDAC1 and RbAp46 (also known as RBBP7), in the cytoplasm, suggesting an assembly of the NuRD core complex before nuclear import. We propose that, in addition to the importin-α-dependent nuclear localization signal, CHD4 is dragged into the nucleus by a 'piggyback' mechanism using the import signals of the associated NuRD subunits.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo
2.
J Biol Chem ; 294(9): 3294-3310, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647132

RESUMO

The Snf2 proteins, comprising 53 different enzymes in humans, belong to the SF2 family. Many Snf2 enzymes possess chromatin-remodeling activity, requiring a functional ATPase domain consisting of conserved motifs named Q and I-VII. These motifs form two recA-like domains, creating an ATP-binding pocket. Little is known about the function of the conserved motifs in chromatin-remodeling enzymes. Here, we characterized the function of the Q and I (Walker I) motifs in hBRG1 (SMARCA4). The motifs are in close proximity to the bound ATP, suggesting a role in nucleotide binding and/or hydrolysis. Unexpectedly, when substituting the conserved residues Gln758 (Q motif) or Lys785 (I motif) of both motifs, all variants still bound ATP and exhibited basal ATPase activity similar to that of wildtype BRG1 (wtBRG1). However, all mutants lost the nucleosome-dependent stimulation of the ATPase domain. Their chromatin-remodeling rates were impaired accordingly, but nucleosome binding was retained and still comparable with that of wtBRG1. Interestingly, a cancer-relevant substitution, L754F (Q motif), displayed defects similar to the Gln758 variant(s), arguing for a comparable loss of function. Because we excluded a mutual interference of ATP and nucleosome binding, we postulate that both motifs stimulate the ATPase and chromatin-remodeling activities upon binding of BRG1 to nucleosomes, probably via allosteric mechanisms. Furthermore, mutations of both motifs similarly affect the enzymatic functionality of BRG1 in vitro and in living cells. Of note, in BRG1-deficient H1299 cells, exogenously expressed wtBRG1, but not BRG1 Q758A and BRG1 K785R, exhibited a tumor suppressor-like function.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , DNA Helicases/genética , Humanos , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética
3.
Nucleic Acids Res ; 45(18): 10534-10554, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977666

RESUMO

CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.


Assuntos
Autoantígenos/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Linhagem Celular Tumoral , Galinhas , Reparo do DNA , Humanos , Nucleossomos/metabolismo , Transcrição Gênica
4.
Extremophiles ; 7(4): 267-74, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12910386

RESUMO

Here we describe a new, extremely thermophilic amoeba growing between 33 degrees C and 57 degrees C ( Topt.=50 degrees C). Isolates had been obtained from hot springs at Agnano Terme (Italy), Yellowstone National Park (USA), Kamchatka (Russia), and the Arenal Volcano (Costa Rica). They could be cultured monoxenically on a thermophilic alpha-proteobacterium. The morphology of the amoeba was studied using a microscope situated under a heatable polyacrylate hood. At 50 degrees C, the cells appeared flat with an irregular triangular or elongate shape, sometimes exhibiting fine spine-like subpseudopodia. On average, they were 22 microm long and 11 microm wide and had one nucleus with a central nucleolus. Based on morphology and on SSU rRNA comparisons, the amoeba belonged to the genus Echinamoeba, where it represents a new species. Referring to its extremely thermophilic lifestyle and its hydrothermal habitat, we name it E. thermarum.


Assuntos
Amébidos/classificação , Amébidos/crescimento & desenvolvimento , Temperatura Alta , Filogenia , Água/parasitologia , Amébidos/citologia , Amébidos/isolamento & purificação , Animais , Costa Rica , Concentração de Íons de Hidrogênio , Itália , Microscopia Eletrônica de Varredura , RNA de Protozoário/genética , RNA Ribossômico/genética , Federação Russa , Cloreto de Sódio/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...